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The concentration dependence of the glass transition temperature Tg of binary polymeric systems, for the 
Couchman entropic and enthalpic treatments, has been described by taking into account the temperature 
dependence of the specific-heat increments Acp(T) and the presence of a characteristic temperature To. It 
is shown that at To the analytical equations undergo a sudden change. Comparison of the equations 
obtained with a set of experimental data on the poly(vinyl chloride)~libutyl phthalate system appears to 
be satisfactory. The treatment allows one to characterize a binary system with suitable thermodynamic 
parameters. 
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INTRODUCTION 

Recently, the composition dependence of the glass 
transition temperature Tg of binary polymeric systems 
(i.e. polymer-diluent and polymer-polymer mixtures) has 
been examined by the authors in the light of the entropic 
treatment proposed by Couchman 1'2, and the problems 
related to the exact form of the Acp(T) function that enters 
Couchman's equation have been discussed in detail 3. The 
influence of specific interactions has also been taken into 
consideration, and, moreover, the entropic treatment has 
been extended to low-temperature regions, where a 
different equation has to be applied, owing to the 
abrupt change of the analytical Acp(T) function of 
the component with higher Tg at some characteristic 
temperature To (ref. 4). The latter treatment can 
explain the presence of a cusp in some experimental 
Tg-composition curves, an argument often debated in 
the literature 5. The composition dependence of Tg has 
been described on the basis of an enthalpic, rather than 
entropic, theory by Painter et al. 6, who investigated the 
effect of specific interactions, in particular of hydrogen 
bonds, in some polymeric blends. The problem has 
recently been discussed thoroughly by Couchman 7, who 
has treated quantitatively the influence of specific 
interactions, i.e. of non-random mixing, on the Tg of 
binary systems using an enthalpic treatment, and by Lu 
and Weiss 8, who have described the Tg - composition 
curve in terms of the Flory ;g parameter. 

* To whom correspondence should be addressed 

The subject of the present paper is the comparison 
between the entropic and enthalpic treatments, when the 
temperature dependence of Acp(T) is taken into account 
and so is the presence of the critical temperature T o , 
below which different equations have to be used. Specific 
interactions are included in the treatment, making use of 
suitable parameters. 

ENTROPY AND ENTHALPY OF MIXING AND 
THE GLASS TRANSITION TEMPERATURE 

When two miscible polymeric or non-polymeric compo- 
nents, whose glass transition temperatures are Tg I and 
Tg 2 (with Tg 2 > Tgl) , are mixed, the entropy and enthalpy 
of the mixture, at its glass transition temperature Tg, have 
identical values in the glassy and liquid phases, so that 
the following equations apply1'7: 

WlSIl-t-w2st2+Aslm=WlS°l +W2S°2+As° m (la) 

Wlh] +w2h~ +Ah~m=Wlh°~ +w2h.O2+Ah° m (lb) 
i g 1 where wi are the weight fractions; si, si, hi, hf are the 

mass-specific liquid and glassy entropies and enthalpies 
of pure components; and Astm, AS°m, AEm, Ah°m are the 
entropies and enthalpies of mixing of the liquid and the 
glass, respectively. 

When strong or specific interactions are absent, i.e. 
when only dispersion forces are active between non-polar 
components, miscible binary mixtures of two polymers, 
or of a polymer and a diluent, are usually taken to be 
random. In this case As m is approximately equal to the 
ideal combinatorial mixing entropy, in particular when 
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the conformation of the macromolecules in the mixture 
is identical to that in the pure states. Since the 
combinatorial mixing entropy is dependent only on 
composition, at the glass transition temperature of the 
mixture, t o As m = As m. 

In practice, non-weak interactions are almost always 
present, those active in the mixture being in general 
different from those of the two pure components. In a 
mixture or in a pure component, the number of strong 
or specific interactions depends on temperature and 
physical state, so that, as a result, the equality As mt= As mg 
is no longer applicable. The difference (Aslm--As°m) can be 
formally used as the parameter that quantifies the effect 
of specific interactions on the analytical equation that 
describes the Tg-composition curve 3. Analogously, in the 

( A h m - A h  m ) can be enthalpic treatment, the difference ~ 0 
used to monitor the effect of interactions between 
the two components. As Couchman has pointed out 
recently v, the enthalpy of mixing is a function of 
composition, of temperature and of interaction energy, 
which in turn depends on the state of aggregation. Ideal 
athermal mixtures are rarely encountered, so that 

l 0 (Ahm-Ahm) is almost always not zero. 

COMPOSITION DEPENDENCE OF THE GLASS 
TRANSITION TEMPERATURE: THEORETICAL 
TREATMENT 

Equations (la) and (lb) are of general applicability, so 
that they can be used for whatever glass transition 
temperature. When the thermodynamic functions s and 
h have to be obtained in an explicit form, however, it 
should be kept in mind that the differences (sl2- s~) and 
( h l -  h~) will exhibit a singular point at a characteristic 
temperature To2, when the following condition is satisfied: 

T g l <  Tg < To2 

To investigate in detail the above conclusion, it is useful 
to start from the papers of Angell 9'1° and Gutzow and 
Dobreva T M ,  which deal with the thermodynamics of 
glassifying systems. Taking the undercooled melt as 
a thermodynamic system in metastable equilibrium 
and the crystal as a stable equilibrium phase at all 
the temperatures of interest, for a generic glassifying 
substance the 'third principle' requires that below Tg a 
characteristic temperature To exists such that at any 
T< T o the following conditions apply: 

t c = 0  (2a)  Cp -- Cp 

s t - s ~ = O  (2b) 

g ~ -  g': = h t - h c = constant (2c) 

where % is the specific heat, g the Gibbs free energy and 
I and c refer respectively to the liquid and crystal states. 

In practice, experimental c / data cannot be obtained in 
the region from Tg to To, and, moreover, in principle, 
different extrapolated curves Ctp(T) can be devised in the 
above temperature region. Following Angell, one can 
select the most gradual decrease t c of (Cp-%) below Tg, so 
that the entropy of the undercooled liquid remains greater 
than the entropy of the crystal as far as possible; 
as a consequence a sharp decrease of C~p in the 
proximity of T O is assumed to take place ~°. An 
identical thermodynamic CZp criterion is suggested, for the 
sake of simplicity, by Gutzow et al. 11.12. 

Accordingly, the characteristic temperature T O is 
therefore defined in the present paper as that at which 
the differences (Clp-Cp) and ( s t - s  c) are both zero 
(equations (2a) and (2b)). From a physical point of view, 
keeping in mind the time dependence of any experimental 
measure of Tg, the characteristic temperature To is defined 
as the 'ideal' glass transition temperature, or the T_ that 
one should observe for infinitely slow cooling rate g-12. 

To obtain in practical cases the To value of a given 
compound, use is made of the equation9'l°: 

Asf = [c~(T)- c~,(T)] d In T (3) 
d To 

whose meaning is that the area between the liquid and 
crystal cp(T) curves from To to the melting temperature 
Tf must be equal to the entropy of fusion Asf. To integrate 
equation (3), two well known approximations can be 
used, the first being: 

Ctp(T) -- cp(T) = constant ~ Acv(Tg) (4) 

where Acp(Tg) is the value of t g (%-%)  measured at the 
glass transition temperature. The equation so obtained is: 

T O = Tf exp[ - asf/Acp(Tg)] (5) 

from which T O can be obtained when Asf and Acp(Tg) are 
available. 

A second, and better, approximation isla: 

Ctp(T) - cp(T) = constant/T (6) 

which can be used at T= Tg under the form: 
l c Tg[cp(Tg)- %(T~)] = constant ~ T~Acp(Tg) (7) 

The integrated equation is now: 

To _ T~ T~acp(~) (8) 
T f A s f -  TgArp(Tg) 

The values of To calculated from equations (5) and (8) 
in some cases are found to be rather different, as seen in 
Table 1 for selected polymers, whose Tg, Acp(Tg), Asf and 
Tf are known from ref. 14. 

Table 1 Values of Tf and Tg for selected polymers (ref. 14) and 
corresponding To values as calculated from equations (5) and (8) 

To 
(K) 

r, r, 
Polymer (K) (K) eq. (5) eq. (8) 

Polyethylene 415 237 161 156 
Polypropylene 461 270 186 181 
Poly(1-butene) 411 249 197 185 
cis-Poly(1,4-butadiene) 285 171 94 100 
Poly(vinyl fluoride) 503 314 217 214 
Polytrifluoroethylene 495 304 244 230 
Polystyrene 516 373 275 276 
Polyoxyethylene 342 206 166 156 
Poly(oxymethylene-oxyethylene) 348 209 157 150 
Polyoxypropylene 348 198 168 153 
Poly(methyl methacrylate) 450 378 234 253 
Polycaprolactone 342 209 151 146 
Nylon-6,6, ct phase 553 323 237 226 
Poly(oxy- 1,4-phenylene) 535 358 270 265 
Poly(oxy-2,6-dimethyl- 1,4- 580 483 420 418 

phenylene) 
Poly(ethylene terephthalate) 553 342 296 275 
Poly(4,4'-isopropylidene- 608 418 229 251 

diphenylene carbonate) 
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An example is represented by diethyl phthalate (DEP), 
a simple substance for which extensive amorphous and 
crystalline heat-capacity, entropy and enthalpy data are 

t and c functions plotted in Figure 1 available 15. The Cp Cp 

for diethyl phthalate show how To can be obtained on 
the basis of equation (3). The extrapolation of 2p(T) is 
carried out from Tg to a temperature T o so that the area 
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Figure 1 Specific heat-temperature diagram of diethyl phthalate. 
Data taken from ref. 15. The undercooled liquid specific heat is 
extrapolated down to T o. The area of the trapezoid is Asf (see text). 
Points: (O) Ctr,(T) and c~,(T); (IS]) c;(T) 
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Figure 2 Entropy-temperature diagram of diethyl phthalate. Data 
taken from ref. 15. The undercooled liquid entropy is extrapolated 
down to To (see text). Points: (O) sl(r) and sg(r); (Fq) sO(T) 
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Figure 3 Enthalpy-temperature diagram of diethyl phthalate. Data 
taken from ref. 15. The undercooled liquid enthalpy is extrapolated 
down to To (full curve; for broken curve, see text). Points: ((5)) (hi(T) - h;) 
and (h°(T) - h•); ([])(hC(T)-h~o) 

of the trapezoid is Asf. The obtained value of T o is 150 K; 
for comparison equations (5) and (8) give T o = 151 and 
144 K respectively. As shown in Figure 2, the temperature 
To can also be obtained by analytical or graphical 
extrapolation of the liquid-phase entropy down to the 
crystal entropy curve. The enthalpy curves (h - h~) (where 
h~ is the unknown residual crystalline enthalpy) are 
plotted in Figure 3, where a schematic representation of 
the undercooled liquid enthalpy is also shown, according 
to refs. 11 and 12. The liquid enthalpy (hl(T)-h~o) is 
extrapolated down to the To value obtained from Figures 
1 or 2 (full curve). In the temperature range from T o down 
to OK, the liquid enthalpy curve (broken curve) is 
calculated according to the condition that the difference 
(ht-hC), or the equivalent ((ht-h~o)-(hC-h~o)), must 
remain constant 11'12. It is clear from Figure 3 that in the 
enthalpy curves T o cannot be identified easily. The 
important point in the above treatment is the singularity 
that the differences (ht-h g) and (st-s  °) show at the 
characteristic temperature To, as revealed in Figures 2 
and 3. 

When reconsidering polymeric mixtures, it is useful to 
introduce the specific-heat increment _ t g (Acp - cp - cp) of the 
two components into Couchman's equations (la) and 
(lb), so that one obtains: 

f/ wl ACpl(T) d In T 
gl 

~- W 2 ACp2(T ) d In T+ (Aslm-- As°m) = 0 
g2 

(9a) 

t'r~ f r~  W 1 A C p l ( T  ) d r +  w 2 A c p 2 ( T  ) d T +  (Ah~-  Ah°m) = 0 
Tgl Tg2 

(9b) 
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Let us consider the case in which component 2 has a 
characteristic temperature T,, lower than TB1, a situation 
often encountered in practice. The first approximation: 

Ac,i( T) = constant/T= AC,i( T,i)T,JT (IO) 

applied to both components, gives, from equation (9a): 

T, = w&p, T,, + w&p, Tgz 
w,Ac,, + w,Acp2 +(A&Ass) 

(114 

and from equation (9b): 

ln T = wi AC,, T,i ln Tgl + w2AcP2 T,, ln T,, -(A%, - AK) 
B 

wi AC,, T,, + w~Ac,z Tg2 

(lib) 
where the AcPi are the specific-heat increments of 
pure components at the respective glass transition 
temperature. Equations (1 la) and (1 lb) can be applied 
in the range of Tg from T,, to T,, when TB1 > TO,. 

When TB1 is lower than TO, (as frequently found for 
high-T, polymers in low-$ solvent), equation (10) cannot 
be used for component 2 m the whole temperature range. 
In particular, below T02, i.e. below the temperature at 
which, on cooling at an extremely low rate, AC,* 
would undergo a sudden decrease to values near zero 
(Figure I), the integration of equations (9a) and (9b) has to 
be carried out accordingly. Taking AC,, ~0 in the 
temperature range from Tgl to TO*, the following 
approximations can therefore be introduced: 

1 _ AC,,(T) d In Tz 1 AC,,(T) d In T (12a) 

In a previous paper4, a linear equation rather different 
from equation (13a) was derived by introducing different 
approximations; it was formally very similar to free- 
volume equations’(j. 

It is worth pointing out that equation (13a) has now 
been obtained without resorting to any approximations 
different from ++=constant/T. It can be noted that at 
TO2 the transition from equations (1 la) and (1 lb) 
to equations (13a) and (13b) respectively is a continuous 
one, the differences (As!,, - As%) and (Ah!,, - A&) being in 
principle continuous functions over the whole composition 
range. On the contrary, at the characteristic temperature 
TO, the corresponding derivatives are discontinuous. As 
a matter of fact, the derivatives of equations (lla), (13a), 
(1 lb) and (13b), calculated at the weight fraction WY (at 
which the glass transition temperature of the mixture is 
T02), are respectively: 

Ac,&- To,)-Acp&- T,,)-T,,Cd(Asf,-Ass,)/dw,l,~ 
w:Acpl + w;Ac,, + (As:, - As&~ 

(144 

1 

T, 

c 

TO2 

AcD2( T) dT% AC,,(T) dT 
J Tgz - J Tgz 

It has to be noted that now the approximation 
AC,,(T) = constant/T can be used with confidence in 
the temperature range from TO, to Tg2. When the 
approximation AC,,(T) = constant/Tis introduced without 
restrictions, integration of equations (9a) and (9b) gives 
respectively: 

1 1 1 
__=_-+~ AC,, 

G,-T,,+(Asf,-A%) T, T,, Ac,,T,, T 02 w2 

W-4 
In T,=ln Tgl 

(13’4 
They are applicable only in the temperature range 
from q1 to To2, i.e. in the concentration range 
close to the low-T, component, whereas, of course, 
equations (1 la) and (1 lb) are to be used above To,. Thus 
the whole T,-composition curve of a system whose 
Tgl is lower than To2 can be described by using 
either equations (lla) and (13a) (entropic treatment) or 
equations (llb) and (13b) (enthalpic treatment). The 
two approaches should in principle and in practice 
be equivalent, because either in the entropic or in 
the enthalpic model the considered mixing terms 
have a physical meaning that, as already noted, is 
strictly connected with the strength of intermolecular 
interactions. 

T 

02 
AcplT,, WJT,2bAc,2T,2 ln(T,,lT,,)-Cd(Ah~-Ahe,)/dw,l,~ 

WY&, T,, + w%,, Tg2 

(14’4 

T Ac,,T,, MJT,2)-Ac,2T,2 In(T,,IT,,)-Cd(Ah:,-Ahe,)ldw,l,~ 
02 

w&T,, 

(I5b) 

If the differences (A&,-As&) and (Ah!,, - Ah;) are very 
small, and therefore negligible, from a comparison of 
equation (14a) with equation (15a) (entropic theory) and 
of equation (14b) with equation (15b) (enthalpic theory), 
it appears evident that the respective derivatives at 
WY must be discontinuous. The matter is more complex 
when the differences (A& - A$) and (Ahf, - Ah%) cannot 
be neglected. In general, both of them will be continuous 
functions of composition, as previously assumed3*4, but 
of course nothing can be said about their derivatives 
at WY. However, from the analysis of experimental data 
for a few polymeric mixtures (see below), one can note 
that either (Ask-As&) or the right and left derivatives of 
the above differences, calculated at the singular point, 
are small in comparison with the other terms that appear 
in equations (14) and (15), so that one can deduce that 
really the derivatives at WY are discontinuous and 
that equations (11) and (13) forecast a singularity in 
T,-composition curves exactly at the critical temperature 
T,2. 
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Figure 4 Dependence of 1/Tg o n  w2/w 1 for PVC-DBP mixture. Data 
taken from refs. 18 and 19. Equation (16a) (entropic theory) is used to 
fit experimental data: q~= -0.11 J g-1 K-1 (full line) 
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COMPARISON WITH EXPERIMENTAL DATA 

When the Tg-composition curves are obtained by 
calorimetric measurements, the difficulty of defining the 
glass transition temperature arises. If the calorimetric 
curves are free of peaks due to kinetic overshoot, the 
point of inflection should be a good approximation to 
the 'equilibrium' value of Tg, i.e. to a value independent 
of the heating rate, according to Richardson' '. To test 
the applicability of the equations obtained above, the 
experimental data on the poly(vinyl chloride~dibutyl 
phthalate system, given in refs. 18 and 19, and referred 
to glass transition temperature inflection values, have 
been chosen as typical for analysis. Specific-heat 
increments of pure dibutyl phthalate (DBP) and poly(vinyl 
chloride) (PVC) at their glass transition temperatures are, 
respectively, 0.54 J g- 1 K -  1 (ref. 18) and 0.31 J g-  1 K -  1 
(ref. 14). Unfortunately, the differences t 0 (Asm - ASm) and 
(Ah~m-Ah~) and their dependence on composition are 
unknown for the system considered, so that they have to 
be determined from Tg-composition data. 

Starting from the solvent side, equations (13a) and (13b) 
(entropic and enthalpic approach respectively) can be 
simplified in the following form: 

, 
- ~- (16a) \wj Tg Tg 1 AcplTg 1 

in Tg=ln Tgl+ qh (w~)  (16b) 
A%IT, x 

where q, and qh represent the terms in square brackets. 
These last parameters can be tentatively measured by 
plotting 1/Tg and In Tg as a function of compositional 
ratio Wz/W 1. As shown in Fiyures 4 and 5, excellent 
straight lines are obtained up to W z / W l ~ l . 5  , which 
indicates that both analytical relations apply satisfactorily 

5.15 , I ; I t I i 

0.0 1.0 2.0 3.0 4.0 
W2/Wl 

Figure 5 Dependence ofln Tg on w2/w I for PVC DBP mixture. Data 
taken from refs. 18 and 19. Equation (16b) (enthalpic theory) is used 
to fit experimental data: qh = 23 J g- ~ (full line) 

in the polymer weight fraction range from 0 to 0.6. 
The values of qs and qh are -0.11 J g - 1  K - 1  and 
23 J g-  1 respectively. The results described above indicate 
that the differences (Aslm -- As°m) and z 9 (Ahm - Ahm) are linear 
functions of w2 in the w2 range from 0 to 0.6, since the 
slopes of the two equations are constant in this 
composition range. 

A different procedure was used for compositions lying 
in the polymer side; starting from equations (l la) and 
(llb), the experimental data have first been used 
to obtain, for all the experimental values of Tg in the 
range 0<w1<0.4,  the corresponding (Aslm-As°m) and 
(AhZm-Ah°m) data. Secondly, the latter have been plotted 
vs. different compositional parameters to minimize the 
squares of the deviations, which have been found to be 
minimized when the product WlW 2 was used as an 
independent variable. The best analytical functions 
obtained are: 

l g (Asm-Asm) = Q, wlw 2 (17a) 

(Ahem- Ahgm) = QhWlW 2 (17b) 

where Q, and Qh have the physical meaning of parameters 
related to the strength of intermolecular interactions (see 
also ref. 7). Equations (1 la) and (11 b) can now be rewritten 
in the following form: 

w1ACpl Tgl "Jr- w2mcp2 Tg2 
Tg- (18a) 

wlAcp~ + w2Acp2 + Qsw~ w2 

T _W~Acpa Tg~ In Tgz + w2Acv2 Tg 2 In Tg2-Qhw~ w2 
I n  

wxA%~ Tgl + w26%2 T.2 

(18b) 

For the PVC-DBP data, one obtains Q, = 0.055 J g-  l K -  
and Qh = 43 J g-  1 
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Finally in Figures 6 and 7 the experimental Tg data 
are plotted as a function of wl over the full range of 
weight fractions, together with the curves corresponding 
to equations (18a) and (18b) in the left-hand part, and to 
equations (16a) and (16b) in the right-hand part. The 
critical temperature at which there is a transition from 
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Figure 6 Glass transition temperature Tg as a function of wl for 
P V C - D B P  mixture. Data  taken from refs. 18 and 19. Equations (18a) 
and (16a) (entropic theory) are used to fit experimental data: 
Qs=0.055 J g - 1 K  -1 and q~= - 0 . 1 1 J g - 1 K  -1 (full curves) 
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Figure 7 Glass transition temperature Tg as a function of w 1 for 
P V C - D B P  mixture. Data  taken from refs. 18 and 19. Equations (18b) 
and (16b) (enthalpic theory) are used to fit experimental data: 
Qh =43  J g -  1 and qh =23  J g -  1 (full curves) 
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Figure 8 Difference ( A s ~ -  As°~) calculated at the experimental glass 
transition temperature of P V C - D B P  mixtures, as a function of wl 
(0 < wl < 0.4, from equation (1 la); 0.4 < w 1 < 1, from equation (13a)) (for 
full and broken curves, see text) 
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F i g u r e  9 Difference (Ah~-Ah~)  calculated at the experimental glass 
transition temperature of P V C - D B P  mixtures, as a function of w 1 
(0 < w 1 < 0.4, from equation (1 lb); 0.4 < w 1 < 1, from equation (13b)) (for 
full and broken curves, see text) 

equation (18) to equation (16) for the PVC-DBP system 
is approximately 253 K (Figures 6 and 7). It should 
correspond to the characteristic temperature T O of 
poly(vinyl chloride), which, however, is not easily 
obtainable from either equation (5) or equation (8) since 
very different values are found in the literature for the 
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enthalpy of fusion of this polymer 14'2°. If To2 is taken to 
be 253 K, the corresponding enthalpy of fusion AH ° 
should be approximately 8 kJ tool- 1, which is lower than 
that given by Wunderlich 14 (11 kJ mol-1). 

In Figures 8 and 9 the apparent differences (Aslm- AsOm) 
and z o (Ahm-Ahm) at the glass transition temperature of 
the PVC DBP mixtures are shown as a function of the 
weight fraction w 1. The excess thermodynamic functions, 
which can be calculated from equations (1 la), (1 lb), (13a) 
and (13b), are called 'apparent' because their values are 
dependent on the approximation used for the temperature 
dependence of Acpi. In the present case they have been 
obtained in the concentration range 0 .4<w1<1 from 
equations (13a) and (13b) by using experimental Tg data 
and by taking TOE = 253 K. The left part of each curve is 
described by equations (17a) and (17b) respectively, with 
Qs=0.055 J g  -~ K -1 and Qh=43Jg  -~ (full curve up to 
w1=0.4; in the proximity of the diluent, the curves 
calculated with these Qs and Qh values are indicated as 
broken curves). On the contrary, the straight full lines 
have been obtained from equations (13a) and (13b) by 
taking qs = - 0.11 J g-  1 K - 1 and qh = 23 J g-  1. 

CONCLUSIONS 

For a binary miscible system, whose pure-component 
glass transition temperatures are Tg I and Tg 2 (with 
Tg 2 > Tgl) , equations relating the Tg of the mixture to the 
composition, based on either an entropic or an enthalpic 
approach, have to be modified when the glass transition 
of the mixture is lower than the 'ideal glass transition' 
Yo2 of component 2. New equations are proposed to 
describe the composition dependence between Tg 1 and 
To2; the equations derived from the enthalpic approach 
can be used for either athermal and non-athermal 
solutions, the difference (AEm-Ah°~) appearing as an 
adjustable parameter. The equations proposed fit well 
the experimental data of the PVC-DBP system, which 
exhibits a cusp in the Tg-composition curve. The results 
show that the system is neither ideal from the entropic 

Pecufiarities of Tg of binary systems. M. C. Righetti et al. 

point of view, nor athermal, specific interactions between 
the ~-hydrogens of PVC and the carbonyl groups of DBP 
being present, as already pointed out by Benedetti et al. 21. 
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